Software Quality Estimation using Machine Learning: Case-based Reasoning Technique
نویسندگان
چکیده
Software quality estimation is one of the most interesting research areas in the domain of software engineering for last few decades. Large numbers of techniques and models have already been worked out in the area of error estimation. The aim of software quality estimation is to identify error prone tasks as the cost can be minimized with advance knowledge about the errors and this early treatment of error will enhance the software quality. In this paper we have explored a set of data in university setting. This paper advocates the use of case-based reasoning (i. e. , CBR) to make a software quality estimation system by the help of human experts. CBR relies on historical information from similar past projects, whereby similarities are determined by comparing the projects, and key attributes. We have used different similarity measures to find the best method which increases estimation accuracy & reliability. This paper presents a work in which we have expanded our previous work [24]. The software is a console based application and thus does not use the GUI functions of the Operating System, which makes it very fast in execution. In order to obtain results we have used an indigenous tool for software quality estimation, run in c++ compiler.
منابع مشابه
A Comparison of Case-Based Reasoning Approaches to Web Hypermedia Project Cost Estimation
Over the years software engineering researchers have suggested numerous techniques for estimating development effort. These techniques have been classified mainly as algorithmic, machine learning and expert judgement. Several studies have compared the prediction accuracy of those techniques, with emphasis placed on linear regression, stepwise regression, and Case-based Reasoning (CBR). To date ...
متن کاملMachine Learning Methods of Effort Estimation and It’s Performance Evaluation Criteria
Effort estimation is important for the control, quality and success of any software development product. Most efficient categories of effort estimation is Expert judgment, Algorithmic estimation and Machine Learning. The aim of this paper is to present the comparative analysis between traditional techniques and Machine Learning (ML) techniques. Results show that ML methods give more accurate ef...
متن کاملA Review of Studies on Machine Learning Techniques
This paper provides an extensive review of studies related to expert estimation of software development using Machine-Learning Techniques (MLT). Machine learning in this new era, is demonstrating the promise of producing consistently accurate estimates. Machine learning system effectively “learns” how to estimate from training set of completed projects. The main goal and contribution of the rev...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملInvestigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)
Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...
متن کامل